Real-Time Simulation of Thin Shells

This paper proposes a real-time simulation technique for thin shells undergoing large deformation. Shells are thin objects such as leaves and papers that can be abstracted as 2D structures. Development of a satisfactory physical model that runs in real-time but produces visually convincing animation of thin shells has been remaining a challenge in computer graphics. […]

Animation of Chemically Reactive Fluids using a Hybrid Simulation Method

Chemical phenomena abound in the real world, and often comprise indispensable elements of visual effects that are routinely created in the film industry. In this paper, we present a hybrid technique for simulating chemically reactive fluids, based on the theory of chemical kinetics. Our method makes synergistic use of both Eulerian grid-based methods and Lagrangian […]

Cubic Shells

Hinge-based bending models are widely used in the physically-based animation of cloth, thin plates and shells. We propose a hinge-based model that is simpler to implement, more efficient to compute, and offers a greater number of effective material parameters than existing models. Our formulation builds on two mathematical observations: (a) the bending energy of curved […]

Real-time Simulations of Bubbles and Foam within a Shallow-Water Framework

Bubbles and foam are important fluid phenomena on scales that we encounter in our lives every day. While different techniques to handle these effects were developed in the past years, they require a full 3D fluid solver with free surfaces and surface tension. We present a shallow water based particle model that is coupled with […]

Legendre Fluids: A Unified Framework for Analytic Reduced Space Modeling and Rendering of Participating Media

In this paper, we present a unified framework for reduced space modeling and rendering of dynamic and nonhomogenous participating media, like snow, smoke, dust and fog. The key idea is to represent the 3D spatial variation of the density, velocity and intensity fields of the media using the same analytic basis. In many situations, natural […]

Time-critical distributed contact for 6-DoF haptic rendering of adaptively sampled reduced deformable models

Real-time evaluation of distributed contact forces for rigid or deformable 3D objects is important for providing multi-sensory feedback in emerging real-time applications, such as 6-DoF haptic force-feedback rendering. Unfortunately, at very high temporal rates (1 kHz for haptics), there is often insufficient time to resolve distributed contact between geometrically complex objects. In this paper, we […]

Adaptive Deformations with Fast Tight Bounds

Simulation of deformations and collision detection are two highly intertwined problems that are often treated separately. This is especially true in existing elegant adaptive simulation techniques, where standard collision detection algorithms cannot leverage the adaptively selected degrees of freedom.We propose a seamless integration of multi-grid algorithms and collision detection that identifies boundary conditions while inherently […]

Screen Space Meshes

 We present a simple yet powerful approach for the generation and rendering of surfaces defined by the boundary of a three-dimensional point cloud. First, a depth map plus internal and external silhouettes of the surface are generated in screen space. These are used to construct a 2D screen space triangle mesh with a new technique […]

CORDE: Cosserat Rod Elements for the Dynamic Simulation of One-Dimensional Elastic Objects

Simulating one-dimensional elastic objects such as threads, ropes or hair strands is a difficult problem, especially if material torsion is considered. In this paper, we present CORDE(french ’rope’), a novel deformation model for the dynamic interactive simulation of elastic rods with torsion. We derive continuous energies for a dynamically deforming rod based on the Cosserat […]

Weakly Compressible SPH for Free Surface Flows

We present a weakly compressible form of the Smoothed Particle Hydrodynamics method (SPH) for fluid flow based on the Tait equation. In contrast to commonly employed projection approaches that strictly enforce incompressibility, time-consuming solvers for the Poisson equation are avoided by allowing for small, user-defined density fluctuations. We also discuss an improved surface tension model […]