Hybrid Simulation of Deformable Solids

Although mesh-based methods are efficient for simulating simple hyperelasticity, maintaining and adapting a mesh-based representation is less appealing in more complex scenarios, e.g. collision, plasticity and fracture. Thus, meshless or point-based methods have enjoyed recent popularity due to their added flexibility in dealing with these situations. Our approach begins with an initial mesh that is […]

Arbitrary Cutting of Deformable Tetrahedralized Objects

We propose a flexible geometric algorithm for placing arbitrary cracks and incisions on tetrahedralized deformable objects. Although techniques based on remeshing can also accommodate arbitrary fracture patterns, this flexibility comes at the risk of creating sliver elements leading to models that are inappropriate for subsequent simulation. Furthermore, interactive applications such as virtual surgery simulation require […]

Adaptive Deformations with Fast Tight Bounds

“Simulation of deformations and collision detection are two highly intertwined problems that are often treated separately. This is especially true in existing elegant adaptive simulation techniques, where standard collision detection algorithms cannot leverage the adaptively selected degrees of freedom.We propose a seamless integration of multi-grid algorithms and collision detection that identifies boundary conditions while inherently […]