Thesis: Controlling Multibody Dynamics via Browsing and Time Reversal

Christopher Twigg’s thesis from CMU: “Animation techniques for controlling passive simulation are commonly based on an optimization paradigm: the user provides goals a priori, and sophisticated numerical methods minimize a cost function that represents these goals. Unfortunately, for multibody systems with discontinuous contact events these optimization problems can be highly nontrivial to solve, and many-hour […]

Cosserat Nets

Cosserat nets are networks of elastic rods that are linked by elastic joints. They allow to represent a large variety of objects such as elastic rings, coarse nets, or truss structures. In this paper, we propose a novel approach to model and dynamically simulate such Cosserat nets. We first derive the static equilibrium of the […]

PixeLux's DMM

I added Pixelux Entertainment’s link on the side.  They have developed a piece of software known as DMM (for  Digital Molecular Matter),  that “is a real-time finite element system that is being used in the “Force Unleashed”, an upcoming video game by LucasArts. [They] also have a plug-in that allows people to utilize FEA-based deformation […]

Book: Fluid simulation for computer graphics

“This book is designed to give the reader a practical introduction to fluid simulation for graphics. The field of fluid dynamics, even just in animation, is vast and so not every topic will be covered, and many wonderful papers will sadly be passed over in the hope of distilling the essentials; this is far from […]

Robust and Efficient Wave Simulations on Deforming Meshes

The goal of this paper is to enable the interactive simulation of phenomena such as animated fluid characters. While full 3D fluid solvers achieve this with control algorithms, these 3D simulations are usually too costly for real-time environments. In order to achieve our goal, we reduce the problem from a three- to a two-dimensional one, […]

Fool Me Twice: Exploring and Exploiting Error Tolerance in Physics-Based Animation

The error tolerance of human perception offers a range of opportunities to trade numerical accuracy for performance in physics-based simulation. However, most previous approaches either focus exclusively on understanding the tolerance of the human visual system or burden the application developer with case-specific implementations. In this paper, based on a detailed set of perceptual metrics, […]