Fracture animation based on high-dimensional Voronoi diagrams

Sara Schvartzmann, Miguel Otaduy

We propose a novel algorithm to simulate brittle fracture. It augments previous methods based on Voronoi diagrams, improving their versatility and their ability to adapt fracture patterns automatically to diverse collision scenarios and object properties. We cast brittle fracture as the computation of a high-dimensional Centroidal Voronoi Diagram (CVD), where the distribution of fracture fragments is guided by the deformation field of the fractured object. By formulating the problem in high dimensions, we support robustly object and crack concavities, as well as intuitive artist control. We further accelerate the fracture animation process with example-based learning of the fracture degree, and a highly parallel tessellation algorithm. As a result, we obtain fast animations of detailed and rich fractures, with fracture patterns that adapt to each particular collision scenario.

Fracture animation based on high-dimensional Voronoi diagrams

(Comments are closed)