Enhancements to Model-Reduced Fluid Simulation

Dan Gerszewski, Ladislav Kavan, Peter-Pike Sloan, Adam W. Bargteil We present several enhancements to model-reduced fluid simulation that allow improved simulation bases and two-way solid-fluid coupling. Specifically, we present a basis enrichment scheme that allows us to combine data driven or artistically derived bases with more general analytic bases derived from Laplacian Eigenfunctions. We handle two-way solid-fluid coupling in a […]

Large-Scale Liquid Simulation on Adaptive Hexahedral Grids

Florian Ferstl, Rudiger Westermann, Christian Dick Regular grids are attractive for numerical fluid simulations because they give rise to efficient computational kernels. However, for simulating high resolution effects in complicated domains they are only of limited suitability due to memory constraints. In this paper we present a method for liquid simulation on  an adaptive octree […]

Robust Simulation of Small-Scale Thin Features in SPH-based Free Surface Flows

Xiaowei He, Huamin Wang, Fengjun Zhang, Hongan Wang, Guoping Wang, Kun Zhou Smoothed particle hydrodynamics (SPH) is efficient, mass preserving, and flexible in handling topological changes. However, small-scale thin features are difficult to simulate in SPH-based free surface flows, due to a number of robustness and stability issues. In this paper, we address this problem from two perspectives: the robustness of surface […]

IISPH-FLIP for Incompressible Fluids

J. Cornelis, M. Ihmsen, A. Peer, M. Teschner We propose to use Implicit Incompressible Smoothed Particle Hydrodynamics (IISPH) for pressure projection and boundary handling in Fluid-Implicit-Particle (FLIP) solvers for the simulation of incompressible fluids. This novel combination addresses two issues of existing SPH and FLIP solvers, namely mass preservation in FLIP and efficiency and memory consumption in SPH. […]