Surface Turbulence for Particle-Based Liquid Simulations

Olivier Mercier, Cynthia Beauchemin, Nils Thuerey, Theodore Kim, Derek Nowrouzezahrai

We present a method to increase the apparent resolution of particlebased liquid simulations. Our method first outputs a dense, temporally coherent, regularized point set from a coarse particle-based liquid simulation. We then apply a surface-only Lagrangian wave simulation to this high-resolution point set. We develop novel methods for seeding and simulating waves over surface points, and use them to generate high-resolution details. We avoid error-prone surface mesh processing, and robustly propagate waves without the need for explicit connectivity information. Our seeding strategy combines a robust curvature evaluation with multiple bands of seeding oscillators, injects waves with arbitrarily fine-scale structures, and properly handles obstacle boundaries. We generate detailed fluid surfaces from coarse simulations as an independent post-process that can be applied to most particle-based fluid solvers.

Surface Turbulence for Particle-Based Liquid Simulations

(Comments are closed)