Smoothed Aggregation Multigrid for Cloth Simulation

Rasmus Tamstorf, Toby Jones, Stephen F. McCormick

Existing multigrid methods for cloth simulation are based on geometric multigrid. While good results have been reported, geometric methods are problematic for unstructured grids, widely varying material properties, and varying anisotropies, and they often have difficulty handling constraints arising from collisions. This paper applies the algebraic multigrid method known as smoothed aggregation to cloth simulation. This method is agnostic to the underlying tessellation, which can even vary over time, and it only requires the user to provide a fine-level mesh. To handle contact constraints efficiently, a prefiltered preconditioned conjugate gradient method is introduced. For highly efficient preconditioners, like the ones proposed here, prefiltering is essential, but, even for simple preconditioners, prefiltering provides significant benefits in the presence of many constraints. Numerical tests of the new approach on a range of examples confirm 6-8X speedups on a fully dressed character with 371k vertices, and even larger speedups on synthetic examples.

Smoothed Aggregation Multigrid for Cloth Simulation

(Comments are closed)