A Semi-Implicit Material Point Method for the Continuum Simulation of Granular Materials

Gilles Daviet, Florence Bertails-Descoubes

We present a new continuum-based method for the realistic simulation of large-scale free-flowing granular materials. We derive a compact model for the rheology of the material, which accounts for the exact nonsmooth Drucker-Prager yield criterion combined with a varying volume fraction. Thanks to a semi-implicit timestepping scheme and a careful spatial discretization of our rheology built upon the Material-Point Method, we are able to preserve at each time step the exact coupling between normal and tangential stresses, in a stable way. This contrasts with previous approaches which either regularize or linearize the yield criterion for implicit integration, leading to unrealistic behaviors or visible grid artifacts. Remarkably, our discrete problem turns out to be very similar to the discrete contact problem classically encountered in multibody dynamics, which allows us to leverage robust and efficient nonsmooth solvers from the literature. We validate our method by successfully capturing typical macroscopic features of some classical experiments, such as the discharge of a silo or the collapse of a granular column. Finally, we show that our method can be easily extended to accommodate more complex scenarios including twoway rigid body coupling as well as anisotropic materials.

A Semi-Implicit Material Point Method for the Continuum Simulation of Granular Materials

(Comments are closed)