Space-time sculpting of liquid animation

Pierre-Luc Manteaux, Ulysse Vimont, Chris Wojtan, Damien Rohmer, Marie-Paule Cani

We propose an interactive sculpting system for seamlessly editing pre-computed animations of liquid, without the need for any re-simulation. The input is a sequence of meshes without correspondences representing the liquid surface over time. Our method enables the efficient selection of consistent space-time parts of this animation, such as moving waves or droplets, which we call space-time features. Once selected, a feature can be copied, edited, or duplicated and then pasted back anywhere in space and time in the same or in another liquid animation sequence. Our method circumvents tedious user interactions by automatically computing the spatial and temporal ranges of the selected feature. We also provide space-time shape editing tools for non-uniform scaling, rotation, trajectory changes, and temporal editing to locally speed up or slow down motion. Using our tools, the user can edit and progressively refine any input simulation result, possibly using a library of pre-computed space-time features extracted from other animations. In contrast to the trial-and-error loop usually required to edit animation results through the tuning of indirect simulation parameters, our method gives the user full control over the edited space-time behaviors.

Space-time sculpting of liquid animation

(Comments are closed)