Physically-Based Droplet Interaction

Richard Jones, Richard Southern In this paper we present a physically-based model for simulating realistic interactions between liquid droplets in an efficient manner. Our particle-based system recreates the coalescence, separation and fragmentation interactions that occur between colliding liquid droplets and allows systems of droplets to be meaningfully repre- sented by an equivalent number of simulated […]

Interactive Wood Combustion for Botanical Tree Models

Sören Pirk, Michał Jarząbek, Torsten Hädrich, Dominik L. Michels, Wojciech Palubicki We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of […]

Conformation Constraints for Efficient Viscoelastic Fluid Simulation

Hector Barreiro, Ignacio Garcia-Fernandez, Ivan Alduan, Miguel A. Otaduy The simulation of high viscoelasticity poses important computational challenges. One is the difficulty to robustly measure strain and its derivatives in a medium without permanent structure. Another is the high stiffness of the governing differential equations. Solutions that tackle these challenges exist, but they are computationally […]

SIGGRAPH Asia 2017

Planar Interpolation with Extreme Deformation, Topology Change and Dynamics A Unified Particle System Framework for Multi-Phase, Multi-Material Visual Simulations Conformation Constraints for Efficient Viscoelastic Fluid Simulation An Adaptive Generalized Interpolation Material Point Method for Simulating Elastostatic Materials Interactive Wood Combustion for Botanical Tree Models …