An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials

Ming Gao, Andre Pradhana Tampubulon, Chenfanfu Jiang, Eftychios Sifakis

We present an adaptive Generalized Interpolation Material Point (GIMP) method for simulating elastoplastic materials. Our approach allows adaptive refining and coarsening of different regions of the material, leading to an efficient MPM solver that concentrates most of the computation resources in specific regions of interest. We propose a C1 continuous adaptive basis function that satisfies the partition of unity property and remains nonnegative throughout the computational domain. We develop a practical strategy for particle-grid transfers that leverages the recently introduced SPGrid data structure for storing sparse multi-layered grids. We demonstrate the robustness and efficiency of our method on the simulation of various elastic and plastic materials. We also compare key kernel components to uniform grid MPM solvers to highlight performance benefits of our method.

An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials

(Comments are closed)