Real-Time Virtual Pipes Simulation and Modeling for Small-Scale Shallow Water

François Dagenais, Julián Guzmán, Valentin Vervondel, Alexander Hay, Sébastien Delorme, David Mould, and Eric Paquette

We propose an approach for real-time shallow water simulation, building upon the virtual pipes model with multi-layered heightmaps. Our approach introduces the use of extended pipes which resolve flow through fully-flooded passages, which is not possible using current multi-layered techniques. We extend the virtual pipe method with a physically-based viscosity model that is both fast and stable. Our viscosity model is integrated implicitly without the expense of solving a large linear system. The liquid is rendered as a triangular mesh surface built from a heightmap. We propose a novel surface optimization approach that prevents interpenetrations of the liquid surface with the underlying terrain geometry. To improve the realism of small-scale scenarios, we present a meniscus shading approach that adjusts the liquid surface normals based on a distance field. Our approach runs in real time on various scenarios of roughly 10×10 cm at a resolution of 0.5 mm with up to five layers.

Real-Time Virtual Pipes Simulation and Modeling for Small-Scale Shallow Water

(Comments are closed)