Small Steps in Physics Simulation

Miles Macklin, Kier Storey, Michelle Lu, Pierre Terdiman, Nuttapong Chentanez, Stefan Jeschke, Matthias Müller

In this paper we re-examine the idea that implicit integrators with large time steps offer the best stability/performance trade-off for stiff systems. We make the surprising observation that performing a single large time step with n constraint solver iterations is less effective than computing n smaller time steps, each with a single constraint solver iteration. Based on this observation, our approach is to split every visual time step into n substeps of length ∆t/n and to perform a single iteration of extended position-based dynamics (XPBD) in each such substep. When compared to a traditional implicit integrator with large time steps we find constraint error and damping are significantly reduced. When compared to an explicit integrator we find that our method is more stable and robust for a wider range of stiffness parameters. This result holds even when compared against more sophisticated implicit solvers based on Krylov methods. Our method is straightforward to implement, and is not sensitive to matrix conditioning nor is it to overconstrained problems

Small Steps in Physics Simulation

(Comments are closed)