A Unified Particle System Framework for Multi-Phase, Multi-Material Visual Simulations

Tao Yang, Jian Chang, Ming C. Lin, Ralph R. Martin, Jian J. Zhang, and Shi-Min Hu We introduce a unified particle framework which integrates the phase-field method with multi-material simulation to allow modeling of both liquids and solids, as well as phase transitions between them. A simple elastoplastic model is used to capture the behavior […]

A Hyperbolic Geometric Flow for Evolving Films and Foams

Sadashige Ishida, Masafumi Yamamoto, Ryoichi Ando, Toshiya Hachisuka Simulating the behavior of soap films and foams is a challenging task. A direct numerical simulation of films and foams via the Navier-Stokes equations is still computationally too expensive. We propose an alternative formulation inspired by geometric flow. Our model exploits the fact, according to Plateau’s laws, […]

An Adaptive Generalized Interpolation Material Point Method for Simulating Elastoplastic Materials

Ming Gao, Andre Pradhana Tampubulon, Chenfanfu Jiang, Eftychios Sifakis We present an adaptive Generalized Interpolation Material Point (GIMP) method for simulating elastoplastic materials. Our approach allows adaptive refining and coarsening of different regions of the material, leading to an efficient MPM solver that concentrates most of the computation resources in specific regions of interest. We propose […]

Physically-Based Droplet Interaction

Richard Jones, Richard Southern In this paper we present a physically-based model for simulating realistic interactions between liquid droplets in an efficient manner. Our particle-based system recreates the coalescence, separation and fragmentation interactions that occur between colliding liquid droplets and allows systems of droplets to be meaningfully repre- sented by an equivalent number of simulated […]

Interactive Wood Combustion for Botanical Tree Models

Sören Pirk, Michał Jarząbek, Torsten Hädrich, Dominik L. Michels, Wojciech Palubicki We present a novel method for the combustion of botanical tree models. Tree models are represented as connected particles for the branching structure and a polygonal surface mesh for the combustion. Each particle stores biological and physical attributes that drive the kinetic behavior of […]

Conformation Constraints for Efficient Viscoelastic Fluid Simulation

Hector Barreiro, Ignacio Garcia-Fernandez, Ivan Alduan, Miguel A. Otaduy The simulation of high viscoelasticity poses important computational challenges. One is the difficulty to robustly measure strain and its derivatives in a medium without permanent structure. Another is the high stiffness of the governing differential equations. Solutions that tackle these challenges exist, but they are computationally […]

MaterialCloning: Acquiring Elasticity Parameters from Images for Medical Applications

Shan Yang, Ming C. Lin We present a practical approach for automatically estimating the material properties of soft bodies from two sets of images, taken before and after deformation. We reconstruct 3D geometry from the given sets of multiple-view images; we use a coupled simulation-optimization-identification framework to deform one soft body at its original, non-deformed […]

A Positive-Definite Cut-Cell Method for Strong Two-Way Coupling Between Fluids and Deformable Bodies

Omar Zarifi, Christopher Batty We present a new approach to simulation of two-way coupling between inviscid free surface fluids and deformable bodies that exhibits several notable advantages over previous techniques. By fully incorporating the dynamics of the solid into pressure projection, we simultaneously handle fluid incompressibility and solid elasticity and damping. Thanks to this strong […]

kDet: Parallel Constant Time Collision Detection for Polygonal Objects

René Weller, Nicole Debowski and Gabriel Zachmann We define a novel geometric predicate and a class of objects that enables us to prove a linear bound on the number of intersecting polygon pairs for colliding 3D objects in that class. Our predicate is relevant both in theory and in practice: it is easy to check […]

Quasi-Newton Methods for Real-time Simulation of Hyperelastic Materials

Tiantian Liu, Sofien Bouaziz, Ladislav Kavan We present a new method for real-time physics-based simulation supporting many different types of hyperelastic materials. Previous methods such as Position Based or Projective Dynamics are fast, but support only limited selection of materials; even classical materials such as the Neo-Hookean elasticity are not supported. Recently, Xu et al. […]