Fast Corotated FEM using Operator Splitting

Tassilo Kugelstadt, Dan Koschier, Jan Bender In this paper we present a novel operator splitting approach for corotated FEM simulations. The deformation energy of the corotated linear material model consists of two additive terms. The first term models stretching in the individual spatial directions and the second term describes resistance to volume changes. By formulating […]

An Extended Partitioned Method for Conservative Solid-Fluid Coupling

Muzaffer Akbay, Nicholas Nobles, Victor Zoran, Tamar Shinar We present a novel extended partitioned method for two-way solid-fluid coupling, where the fluid and solid solvers are treated as black boxes with limited exposed interfaces, facilitating modularity and code reusability. Our method achieves improved stability and extended range of applicability over standard partitioned approaches through three […]

Projective peridynamics for modeling versatile elastoplastic materials

Xiaowei He, Huamin Wang, Enhua Wu Unified simulation of versatile elastoplastic materials and different dimensions offers many advantages in animation production, contact handling, and hardware acceleration. The unstructured particle representation is particularly suitable for this task, thanks to its simplicity. However, previous meshless techniques either need too much computational cost for addressing stability issues, or […]

A Temporally Adaptive Material Point Method with Regional Time Stepping

Yu Fang, Yuanming Hu, Shi-Min Hu, Chenfanfu Jiang Spatially and temporally adaptive algorithms can substantially improve the computational efficiency of many numerical schemes in computational mechanics and physics-based animation. Recently, a crucial need for temporal adaptivity in the Material Point Method (MPM) is emerging due to the potentially substantial variation of material stiffness and velocities in […]

Time-Domain Parallelization for Accelerating Cloth Simulation

Junbang Liang, Ming C. Lin Cloth simulations, widely used in computer animation and apparel design, can be computationally expensive for real-time applications. Some parallelization techniques have been proposed for visual simulation of cloth using CPU or GPU clusters and often rely on parallelization using spatial domain decomposition techniques that have a large communication overhead. In […]

Hyper-Reduced Projective Dynamics

Christopher Brandt, Elmar Eisemann, Klaus Hildebrandt We present a method for the real-time simulation of deformable objects that combines the robustness, generality, and high performance of Projective Dynamics with the efficiency and scalability offered by model reduction techniques. The method decouples the cost for time integration from the mesh resolution and can simulate large meshes […]

Immersion of Self-Intersecting Solids and Surfaces

Yijing Li, Jernej Barbič Self-intersecting, or nearly self-intersecting, meshes are commonly found in 2D and 3D computer graphics practice. Self-intersections occur, for example, in the process of artist manual work, as a by-product of procedural methods for mesh generation, or due to modeling errors introduced by scanning equipment. If the space bounded by such inputs […]

FEPR: Fast Energy Projection for Real-Time Simulation of Deformable Objects

Dimitar Dinev, Tiantian Liu, Jing Li, Bernhard Thomaszewski, Ladislav Kavan We propose a novel projection scheme that corrects energy fluctuations in simulations of deformable objects, thereby removing unwanted numerical dissipation and numerical “explosions”. The key idea of our method is to first take a step using a conventional integrator, then project the result back to […]

Anderson Acceleration for Geometry Optimization and Physics Simulation

Yue Peng, Bailin Deng, Juyong Zhang, Fanyu Geng, Wenjie Qin, Ligang liu Many computer graphics problems require computing geometric shapes subject to certain constraints. This often results in non-linear and non-convex optimization problems with globally coupled variables, which pose great challenge for interactive applications. Local-global solvers developed in recent years can quickly compute an approximate […]

Projective Skinning

Martin Komaritzan, Mario Botsch We present a novel approach for physics-based character skinning. While maintaining real-time performance it overcomes the well-known artifacts of commonly used geometric skinning approaches, it enables dynamic effects, and it resolves local self-collisions. Our method is based on a two-layer model consisting of rigid bones and an elastic soft tissue layer. […]