Interactive Modeling and Authoring of Climbing Plants

Torsten Hädrich, Bedrich Benes, Oliver Deussen, Sören Pirk We present a novel system for the interactive modeling of developmental climbing plants with an emphasis on efficient control and plausible physics response. A plant is represented by a set of connected anisotropic particles that respond to the surrounding environment and to their inner state. Each particle […]

Position and Orientation Based Cosserat Rods

Tassilo Kugelstadt, Elmar Schoemer We present a novel method to simulate bending and torsion of elastic rods within the position-based dynamics (PBD) framework. The main challenge is that torsion effects of Cosserat rods are described in terms of material frames which are attached to the centerline of the rod. But frames or orientations do not […]

Adaptive Skinning for Interactive Hair-Solid Simulation

Menglei Chai, Changxi Zheng and Kun Zhou Reduced hair models have proven successful for interactively simulating a full head of hair strands, building upon a fundamental assumption that only a small set of guide hairs are needed for explicit simulation, and the rest of the hair move coherently and thus can be interpolated using guide […]

Real-time Hair Mesh Simulation

Kui Wu, Cem Yuksel We present a robust real-time hair simulation method using hair meshes. Leveraging existing simulation models for sheet-based cloth, we introduce a volumetric force model for incorporating hair interactions inside the hair mesh volume. We also introduce a position correction method that minimizes the local deformation of the hair mesh due to […]

Biomechanical Simulation and Control of Hands and Tendinous Systems

Prashant Sachdeva, Shinjiro Sueda, Susanne Bradley, Mikhail Fain, Dinesh K. Pai The tendons of the hand and other biomechanical systems form a complex network of sheaths, pulleys, and branches. By modeling these anatomical structures, we obtain realistic simulations of coordination and dynamics that were previously not possible. First, we introduce Eulerian-on-Lagrangian discretization of tendon strands, with a […]

Wetbrush: GPU-based 3D painting simulation at the bristle level

Zhili Chen, Byungmoon Kim, Daichi Ito, Huamin Wang We present a real-time painting system that simulates the interactions among brush, paint, and canvas at the bristle level. The key challenge is how to model and simulate sub-pixel paint details, given the limited computational resource in each time step. To achieve this goal, we propose to […]

Efficient Simulation of Knitted Cloth using Persistent Contacts

Gabriel Cirio, Jorge Lopez-Moreno, Miguel Otaduy Knitted cloth is made of yarns that are stitched in regular patterns, and its macroscopic behavior is dictated by the contact interactions between such yarns. We propose an efficient representation of knitted cloth at the yarn level that treats yarn-yarn contacts as persistent, thereby avoiding expensive contact handling altogether. […]

Yarn-Level Simulation of Woven Cloth

Gabriel Cirio, Jorge Lopez-Moreno, David Miraut, Miguel A. Otaduy The large-scale mechanical behavior of woven cloth is determined by the mechanical properties of the yarns, the weave pattern, and frictional contact between yarns. Using standard simulation methods for elastic rod models and yarn-yarn contact handling, the simulation of woven garments at realistic yarn densities is […]

Coupling Hair with Smoothed Particle Hydrodynamics Fluids

Wei-Chin Lin We present a two-way coupling technique for simulating the complex interaction between hair and fluids. In our approach, the motion of hair and fluids is simulated by evaluating the hydrodynamic forces among them based on boundary handling techniques used in SPH (Smoothed Particle Hydrodynamics) fluids. When hair makes contact with fluids, water absorption […]

Adaptive Nonlinearity for Collisions in Complex Rod Assemblies

Danny M. Kaufman, Rasmus Tamstorf, Breannan Smith, Jean-Marie Aubry, Eitan Grinspun We develop an algorithm for the efficient and stable simulation of large-scale elastic rod assemblies. We observe that the time-integration step is severely restricted by a strong nonlinearity in the response of stretching modes to transversal impact, the degree of this nonlinearity varying greatly […]