View-Dependent Adaptive Cloth Simulation

Woojong Koh, Rahul Narain, James F. O’Brien This paper describes a method for view-dependent cloth simulation using dynamically adaptive mesh refinement and coarsening. Given a prescribed camera motion, the method adjusts the criteria controlling refinement to account for visibility and apparent size in the camera’s view. Objectionable dynamic artifacts are avoided by anticipative refinement and smoothed […]

Projective Dynamics: Fusing Constraint Projections for Fast Simulation

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, Mark Pauly We present a new method for implicit time integration of physical systems. Our approach builds a bridge between nodal Finite Element methods and Position Based Dynamics, leading to a simple, efficient, robust, yet accurate solver that supports many different types of constraints. We propose specially designed energy potentials that can […]

Strain-Based Dynamics

Matthias Mueller, Nuttapong Chentanez, Tae-Yong Kim, Miles Macklin We propose a new set of constraints within the Position Based Dynamics (PBD) framework that allow the control of strain in directions that are independent of the edge directions of the simulation mesh. Instead of constraining distances between points, we constrain the entries of the Green – St Venant […]

Unified Particle Physics for Real-Time Applications

Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim We present a unified dynamics framework for real-time visual effects. Using particles connected by constraints as our fundamental building block allows us to treat contact and collisions in a unified manner, and we show how this representation is flexible enough to model gases, liquids, deformable solids, […]

Constrainable Multigrid For Cloth

Inyong Jeon, Kwang-Jin Choi, Tae-Yong Kim, Bong-Ouk Choi, and Hyeong-Seok Ko We present a new technique which can handle both point and sliding constraints in the multigrid (MG) framework. Although the MG method can theoretically perform as fast as O(N), the development of a clothing simulator based on the MG method calls for solving an important technical […]

Multilevel Cloth Simulation using GPU Surface Sampling

N. Schmitt, Martin Knuth, Jan Bender, A. Kuijper Today most cloth simulation systems use triangular mesh models. However, regular grids allow many optimizations as connectivity is implicit, warp and weft directions of the cloth are aligned to grid edges and distances between particles are equal. In this paper we introduce a cloth simulation that combines both model […]

A GPU-Based Streaming Algorithm for High Resolution Cloth Simulation

Min Tang, Ruofeng Tong, Rahul Narain, Chang Meng, Dinesh Manocha We present a GPU-based streaming algorithm to perform high-resolution and accurate cloth simulation. We map all the components of cloth simulation pipeline, including time integration, collision detection, collision response, and velocity updating to GPU-based kernels and data structures. Our algorithm perform intra-object and inter-object collisions, […]

Modeling and Estimation of Internal Friction in Cloth

Eder Miguel, Rasmus Tamstorf, Derek Bradley, Sara C. Schvartzman, Bernhard Thomaszewski, Bernd Bickel, Wojciech Matusik, Steve Marschner, Miguel A. Otaduy Force-deformation measurements of cloth exhibit significant hysteresis, and many researchers have identified internal friction as the source of this effect. However, it has not been incorporated into computer animation models of cloth. In this paper, we propose a model of […]

Fast Simulation of Mass-Spring Systems

Tiantian Liu, Adam Bargteil, James F. O’Brien, Ladislav Kavan We describe a scheme for time integration of mass-spring systems that makes use of a solver based on block coordinate descent. This scheme provides a fast solution for classical linear (Hookean) springs. We express the widely used implicit Euler method as an energy minimization problem and introduce […]

Thin Skin Elastodynamics

Duo Li, Shinjiro Sueda, Debanga R. Neog, Dinesh K. Pai We present a novel approach to simulating thin hyperelastic skin. Real human skin is only a few millimeters thick. It can stretch and slide over underlying body structures such as muscles, bones, and tendons, revealing rich details of a moving character. Simulating such skin is […]