An Efficient Solver for Two-way Coupling Rigid Bodies with Incompressible Flow

Mridul Aanjaneya We present an efficient solver for monolithic two-way coupled simulation of rigid bodies with incompressible fluids that is robust to poor conditioning of the coupled system in the presence of large density ratios between the solid and the fluid. Our method leverages ideas from the theory of Domain Decomposition, and uses a hybrid […]

Liquid Splash Modeling with Neural Networks

Kiwon Um, Xiangyu Hu, Nils Thuerey This paper proposes a new data-driven approach to model detailed splashes for liquid simulations with neural networks. Our model learns to generate small-scale splash detail for the fluid-implicit-particle method using training data acquired from physically parameterized, high resolution simulations. We use neural networks to model the regression of splash […]

Turbulent Micropolar SPH Fluids with Foam

Jan Bender, Dan Koschier, Tassilo Kugelstadt, Marcel Weiler In this paper we introduce a novel micropolar material model for the simulation of turbulent inviscid fluids. The governing equations are solved by using the concept of Smoothed Particle Hydrodynamics (SPH). As already investigated in previous works, SPH fluid simulations suffer from numerical diffusion which leads to […]

Example-based turbulence style transfer

Syuhei Sato, Yoshinori Dobashi, T. Kim, and Tomoyuki Nishita Generating realistic fluid simulations remains computationally expensive, and animators can expend enormous effort trying to achieve a desired motion. To reduce such costs, several methods have been developed in which high-resolution turbulence is synthesized as a post process. Since global motion can then be obtained using […]

Extended Narrow Band FLIP for Liquid Simulations

Takahiro Sato, Chris Wojtan, Nils Thuerey, Takeo Igarashi, Ryoichi Ando The Fluid Implicit Particle method (FLIP) reduces numerical dissipation by combining particles with grids. To improve performance, the subsequent narrow band FLIP method (NB-FLIP) uses a FLIP-based fluid simulation only near the liquid surface and a traditional grid-based fluid simulation away from the surface. This […]

Learning Three-Dimensional Flow for Interactive Aerodynamic Design

Nobuyuki Umetani, Bernd Bickel We present a data-driven technique to instantly predict how fluid flows around various three-dimensional objects. Such simulation is useful for computational fabrication and engineering, but is usually computationally expensive since it requires solving the Navier-Stokes equation for many time steps. To accelerate the process, we propose a machine learning framework which […]

Scalable Laplacian Eigenfluids

Qiaodong Cui, Pradeep Sen, Theodore Kim The Laplacian Eigenfunction method for fluid simulation, which we refer to as Eigenfluids, introduced an elegant new way to capture intricate fluid flows with near-zero viscosity. However, the approach does not scale well, as the memory cost grows prohibitively with the number of eigenfunctions. The method also lacks generality, […]

Automatically Distributing Eulerian and Hybrid Fluid Simulations in the Cloud

Omid Mashayekhi, Chinmayee Shah, Hang Qu, Andrew Lim, Philip Levis Distributing a simulation across many machines can drastically speed up computations and increase detail. The computing cloud provides tremendous computing resources, but weak service guarantees force programs to manage significant system complexity: nodes, networks, and storage occasionally perform poorly or fail. We describe Nimbus, a […]

An Advection-Reflection Solver for Detail-Preserving Fluid Simulation

Jonas Zehnder, Rahul Narain, Bernhard Thomaszewski Advection-projection methods for fluid animation are widely appreciated for their stability and efficiency. However, the projection step dissipates energy from the system, leading to artificial viscosity and suppression of small-scale details. We propose an alternative approach for detail-preserving fluid animation that is surprisingly simple and effective. We replace the […]

A Material Point Method for Thin Shells with Frictional Contact

Qi Guo, Xuchen Han, Chuyuan Fu, Theodore Gast, Rasmus Tamstorf, Joseph Teran We present a novel method for simulation of thin shells with frictional contact using a combination of the Material Point Method (MPM) and subdivision finite elements. The shell kinematics are assumed to follow a continuum shell model which is decomposed into a Kirchhoff-Love […]