Efficient Collision Detection for Brittle Fracture

Loiez Glondu, Sarah Schvartzman, Maud Marchal, Georges Dumon, Miguel Otaduy In complex scenes with many objects, collision detection plays a key role in the simulation performance. This is particularly true for fracture simulation, where multiple new objects are dynamically created. In this paper, we present novel algorithms and data structures for collision detection in real-time […]

A Hexahedral Multigrid Approach for Simulating Cuts in Deformable Objects

We present a hexahedral finite element method for simulating cuts in deformable bodies using the corotational formulation of strain at high computational efficiency. Key to our approach is a novel embedding of adaptive element refinements and topological changes of the simulation grid into a geometric multigrid solver. Starting with a coarse hexahedral simulation grid, this […]

FASTCD: Fracturing-Aware Stable Collision Detection

We present a collision detection (CD) method for complex and large-scale fracturing models that have geometric and topological changes. We first propose a novel dual-cone culling method to improve the performance of CD, especially self-collision detection among fracturing models. Our dual-cone culling method has a small computational overhead and a conservative algorithm. Combined with bounding […]

Dynamic Local Remeshing for Elastoplastic Simulation

We propose a finite element simulation method that addresses the full range of material behavior, from purely elastic to highly plastic, for physical domains that are substantially reshaped by plastic flow, fracture, or large elastic deformations. To mitigate artificial plasticity, we maintain a simulation mesh in both the current state and the rest shape, and […]

Real-Time Deformation and Fracture in a Game Environment

This paper describes a simulation system that has been developed to model the deformation and fracture of solid objects in a real-time gaming context. Based around a corotational tetrahedral finite element method, this system has been constructed from components published in the graphics and computational physics literatures. The goal of this paper is to describe […]

PixeLux's DMM

I added Pixelux Entertainment’s link on the side.  They have developed a piece of software known as DMM (for  Digital Molecular Matter),  that “is a real-time finite element system that is being used in the “Force Unleashed”, an upcoming video game by LucasArts. [They] also have a plug-in that allows people to utilize FEA-based deformation […]

Polyhedral Finite Elements Using Harmonic Basis Functions

Finite element simulations in computer graphics are typically based on tetrahedral or hexahedral elements, which enables simple and efficient implementations, but in turn requires complicated remeshing in case of topological changes or adaptive refinement. We propose a flexible finite element method for arbitrary polyhedral elements, thereby effectively avoiding the need for remeshing. Our polyhedral finite […]

Some Theses…

Frank Losasso’s PhD thesis on fluid simulation, which contains previously unpublished work on coupling together SPH and level set based fluid simulations: Algorithms for Increasing the Efficiency and Fidelity of Fluid Simulation Eftychios Sifakis’ PhD thesis on face, muscle, speech, and surgery simulation: Algorithmic Aspects of the Simulation and Control of Computer Generated Human Anatomy […]

Hybrid Simulation of Deformable Solids

Although mesh-based methods are efficient for simulating simple hyperelasticity, maintaining and adapting a mesh-based representation is less appealing in more complex scenarios, e.g. collision, plasticity and fracture. Thus, meshless or point-based methods have enjoyed recent popularity due to their added flexibility in dealing with these situations. Our approach begins with an initial mesh that is […]

Arbitrary Cutting of Deformable Tetrahedralized Objects

We propose a flexible geometric algorithm for placing arbitrary cracks and incisions on tetrahedralized deformable objects. Although techniques based on remeshing can also accommodate arbitrary fracture patterns, this flexibility comes at the risk of creating sliver elements leading to models that are inappropriate for subsequent simulation. Furthermore, interactive applications such as virtual surgery simulation require […]