Augmented Incremental Potential Contact for Sticky Interactions

Yu Fang, Minchen Li, Yadi Cao, Xuan Li, Joshuah Wolper, Yin Yang, Chenfanfu Jiang

We introduce a variational formulation for simulating sticky interactions between elastoplastic solids. Our method brings a wider range of material behaviors into the reach of the Incremental Potential Contact (IPC) solver recently developed by [1]. Extending IPC requires several contributions. We first augment IPC with the classical Raous-Cangemi-Cocou (RCC) adhesion model. This allows us to robustly simulate the sticky interactions between arbitrary codimensional-0, 1, and 2 geometries. To enable user-friendly practical adoptions of our method, we further introduce a physically parametrized, easily controllable normal adhesion formulation based on the unsigned distance, which is fully compatible with IPC’s barrier formulation. Furthermore, we propose a smoothly clamped tangential adhesion model that naturally models intricate behaviors including debonding. Lastly, we perform benchmark studies comparing our method with the classical models as well as real-world experimental results to demonstrate the efficacy of our method.

Augmented Incremental Potential Contact for Sticky Interactions

(Comments are closed)